Real-space pseudopotential method for computing the vibrational Stark effect
نویسندگان
چکیده
منابع مشابه
A real-space pseudopotential method for computing the electronic properties of periodic systems
We present a real space method for electronic structure calculations of periodic systems. Our method is based on self-consistent solution of the Kohn-Sham equations on a uniform threedimensional grid. A higher-order finite difference method is combined with ab initio pseudopotentials. The kinetic energy operator, the non-local term of the ionic pseudopotential and the Hartree and exchange-corre...
متن کاملVibrational stark effect probes for nucleic acids.
The vibrational Stark effect (VSE) has proven to be an effective method for the study of electric fields in proteins via the use of infrared probes. To explore the use of VSE in nucleic acids, we investigated the Stark spectroscopy of nine structurally diverse nucleosides. These nucleosides contained nitrile or azide probes in positions that correspond to both the major and minor grooves of DNA...
متن کاملVibrational Stark Effect of the Electric-Field Reporter
4-mercaptobenzonitrile (MBN) in self-assembled monolayers (SAMs) on Au and Ag electrodes was studied by surface enhanced infrared absorption and Raman spectroscopy, to correlate the nitrile stretching frequency with the local electric field exploiting the vibrational Stark effect (VSE). Using MBN SAMs in different metal/SAM interfaces, we sorted out the main factors controlling the nitrile stre...
متن کاملComputing Stark units for totally real cubic fields
A method for computing provably accurate values of partial zeta functions is used to numerically confirm the rank one abelian Stark Conjecture for some totally real cubic fields of discriminant less than 50000. The results of these computations are used to provide explicit Hilbert class fields and some ray class fields for the cubic extensions.
متن کاملTime-Dependent Real-Space Renormalization Group Method
In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Chemical Physics
سال: 2016
ISSN: 0021-9606,1089-7690
DOI: 10.1063/1.4965918